Comparisons of Ranking List Example =================================== An example of code is provided to illustrate the rating of teams with various methods and then to compare the ranking lists. #. Teams ratings are produced by the following methods: * WinLoss * Colley * Massey * Elo (win version) * Elo (points version) * Keener * OffenseDefense * AccuRATE * GeM #. Ranking lists are compared with Kendall tau #. In this example we have considered the first 20 matches of EPL 2018-2019 Data :ref:`soccer_data_20first` *********** Python code *********** .. literalinclude:: ../../../../examples/sports/soccer_kendall.py :language: python :linenos: ******* Results ******* The results of rating values are the same with :ref:`/examples/sports/soccer_ratings.rst` The table below compares the ranking lists generated by the rating methods. The lower diagonal elements represent Kendall’s tau values of each pair, while the upper diagonal elements the p-values of each pair from the two-sided hypothesis test, whose null hypothesis is an absence of association. .. code-block:: console =====Kendall Tau comparison of ranking lists===== Winloss Colley Massey EloWin EloPoint Keener OffenseDefense Markov AccuRATE Winloss 1.0 5.9e-06 0.0631 4.92e-06 1.6e-05 6.06e-06 0.0385 0.194 8.15e-06 Colley 0.831 1.0 0.111 7.1e-08 6.28e-06 1.78e-06 0.0347 0.0739 7.02e-06 Massey 0.339 0.26 1.0 0.14 0.186 0.186 0.186 0.0468 0.205 EloWin 0.859 0.907 0.247 1.0 5.17e-07 1.82e-07 0.0279 0.0821 2.46e-07 EloPoint 0.786 0.737 0.221 0.839 1.0 1.37e-13 0.0336 0.0638 1.28e-08 Keener 0.824 0.78 0.221 0.872 0.937 1.0 0.0336 0.0638 5.93e-09 OffenseDefense 0.377 0.345 0.221 0.367 0.347 0.347 1.0 0.288 0.0551 Markov 0.236 0.292 -0.326 0.291 0.305 0.305 0.179 1.0 0.0639 AccuRATE 0.818 0.738 0.207 0.868 0.928 0.95 0.313 0.302 1.0